

Baseball Field Geometry Lesson Overview

Key Ideas in This Session:

Youth explore the dimensions of the baseball field such as distances between home plate and the pitching mound, distance between bases, and various angles within the infield. Youth also learn about neuroplasticity and adapting to new situations, such as different ballparks.

Driving Questions:

- 1. How can we measure different angles and distances on a baseball field?
- 2. How can we train our brain to adapt to a variety of situations?

Math Standards:

3.MD.4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch to the nearest quarter inch.

4.G.2 Classify two-dimensional figures based on the presence or absence of angles of a specified size. Recognize right triangles and identify right triangles.

4.MD.5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint and understand concepts of angle measurement.

7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.

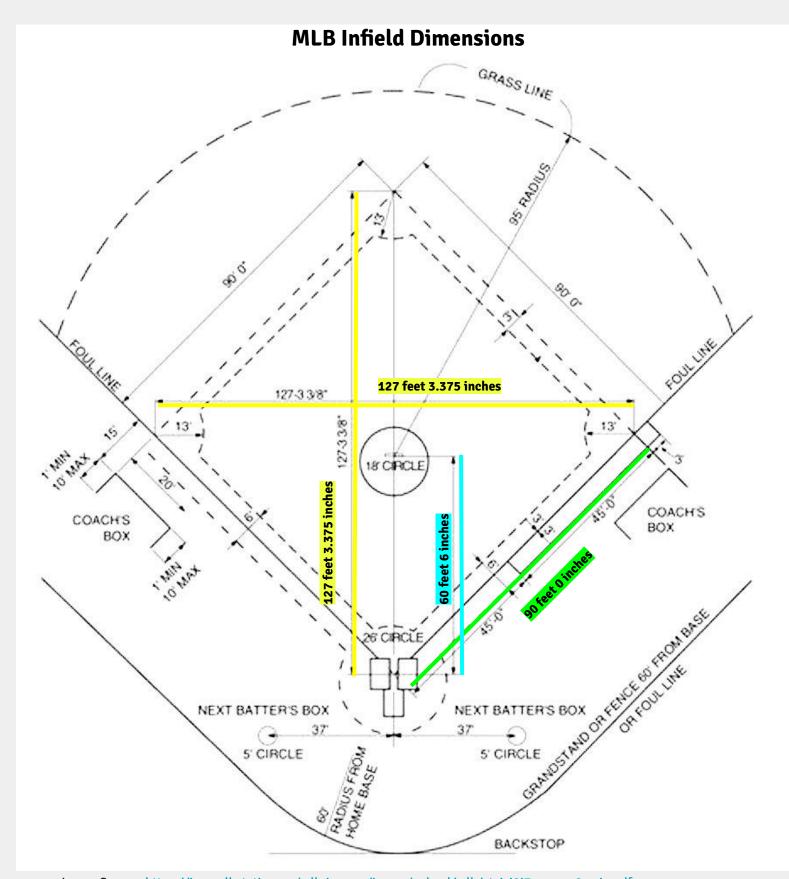
Activity	Time	Description
Activity 1	20 minutes	Youth learn about three different types of triangles, their angles and how to identify angles used on the baseball field. There are two options for this activity, one that is more appropriate for youth will less experience measuring angles and one that is more appropriate for youth with more experience measuring angles.
Activity 2	40 minutes	Repeated measurements improve accuracy and precision. Using a 10 foot and a 100 foot tape measure, youth will estimate and measure infield distances on the baseball field. Baseball fields have the same distances between bases but distances to outfield walls vary. Youth learn that just like baseball players, they can adapt to new situations and be successful.

Materials

- Pencils, Markers
- Rulers (1 per pair of youth)
- Bases (for home plate, and 3 bases)
- Tape measure (10ft.) (1 per small group)
- Tape measure (100ft.) (1 per small group)
- Protractors (1 per pair of youth)
- Making angles tool (2 rectangular strips of card stock joined by a metal brad) (1 per youth)
- Clipboards (to record measurements)
- Worksheet Baseball Field (one copy per youth)
- Worksheets 1-4 (one copy per youth)

Set-Up

See set up instructions on the following 2 pages for field set up.

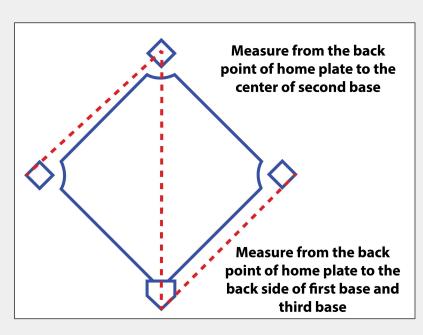

For Activity 1, distribute pencils, a ruler, a protractor and **Worksheets 1-3** to each youth.

For Activity 2, distribute a 10 ft. and 100 ft. tape measure to each group for the outdoor activity on the baseball field and a copy of **Worksheet 4** to each youth.

Growth Mindset Connection

Malleability of the brain and the role of struggle in learning.

Instructions for Setting Up Baseball Field (1 of 2)


Instructions for Setting Up Baseball Field (2 of 2)

MLB, Little League, and Indoor/Small Space Infield Dimensions Chart

	Distance between Bases	Distance between home plate and pitcher's mound	Distance between home plate and second base
MLB	90 feet	60 feet 6 inches	127 feet 3.375 inches
Little League	60 feet	46 feet	~ 85 feet
Indoor and Small Space Set Up	30 feet	20 feet 2 inches	~ 42 feet

MLB dimensions source: https://www.mlb.com/glossary/rules/field-dimensions

How to Measure Between Bases

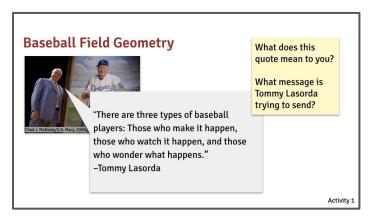

To measure from each base:

Measure from the back point of home plate along the outer edge of first base (1B) and third base (3B) to the far edge.

Measure from the far corner of first or third base (3B) along the outer edge to the center of second base (2B), and from the back point of home plate (HP) to the center of second base (2B).

Baseball Field Geometry Introduction

Start the session by providing youth with an overview of the key activities.



Baseball Field Geometry Youth Slides, Slide 1

Next, share and discuss this quote.

"There are three types of baseball players: Those who make it happen, those who watch it happen and those who wonder what happens."

- Tommy Lasorda.

Baseball Field Geometry Youth Slides, Slide 2

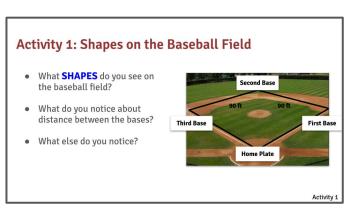
Activity 1 - Identifying Angles on a Baseball Field (1 of 5)

Description:

Youth learn about three different types of triangles, their angles and how to identify angles used on the baseball field.

Activity Option 1: For Younger Youth

Math Ideas in In this activity, youth discuss shapes and angles that they see on the baseball field. Shapes could include circles, different kinds of triangles, rectangles or squares. For each shape identified, ask youth to describe the properties of the shape including the number of sides, and the angles. For example, youth might recognize equilateral triangles - a triangle with three congruent sides and three congruent angles. All angles in an equilateral triangle measure 60 degrees. Youth may also recognize right triangles - a triangle with one right (90 degree) angle. Youth may also identify rectangles - shapes with four sides and four right (90 degree) angles. Youth will also explore different angles on a baseball field, including acute angles (less than 90 degrees), obtuse angles (more than 90 degrees) and right angles (equal to 90 degrees).


Math Ideas in **Activity Option 2:** For Older **Youth**

In this activity, youth discuss and draw three different kinds of triangles. An isosceles triangle is a triangle with two congruent sides and angles. An equilateral triangle is a triangle with three congruent sides and three congruent angles. All angles in an equilateral triangle measure 60 degrees. A right triangle is a triangle with one right (90 degree) angle. Youth use rulers to measure lines and compare distances. Youth use protractors to measure and label angles on the baseball field, including acute angles (less than 90 degrees), obtuse angles (more than 90 degrees) and right angles (equal to 90 degrees). Youth also identify perpendicular lines on the baseball field. Perpendicular lines intersect to form four right (90 degree) angles.

LAUNCH: **Connecting to** Prior Knowledge

Project an image of a real-life baseball field. Ask youth to share with a partner what shapes, lines and angles they see on the field.

- What shapes do you see on the baseball field?
- What do you notice about the distance between the bases?
- What else do you notice?

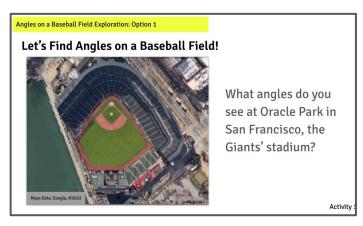
Baseball Field Geometry Youth Slides 3

Activity 1 - Identifying Angles on a Baseball Field (2 of 5)

Whole Group Activity Option 1: For Younger Youth -Learning About Angles on a Baseball Field Provide each youth with a angle measure tool (2 rectangular strips joined at one end with a metal brad fastener) and use the tool to make acute, right, or obtuse angles during video.

To support youth learning about angles, share a video that describes different types of angles. Ask youth to share what they learned about angles.

VIDEO:


https://www.youtube.com/watch?v=NVuMULOjb3o

Finding and Classifying Angles on Images of Baseball Fields Project different images of baseball fields and ask youth to share examples of angles that they see in the image. Encourage youth to identify angles as acute, right, or obtuse.

Ask youth to use their angle measurement tool to "measure" the angles that they see on the images. For each angle, ask youth to identify whether the angle is acute, obtuse, or a right angle.

Baseball Field Geometry Youth Slides, Slide 4

Baseball Field Geometry Youth Slides, Slide 5

Baseball Field Geometry Youth Slides, Slide 6

Activity 1 - Identifying Angles on a Baseball Field (3 of 5)

Whole Group
Activity
Option 2:
For Older
Youth Measuring
Angles on
Images of a

Baseball

Field using a

Protractor

Ask youth to notice the two red lines drawn on the baseball field. One line goes from second base to home plate. The other line goes from third base to first base. Ask youth to share observations and ask:

- Are the lengths of the two lines the same? How can you check to be sure?
- What kind of angles are formed at the intersection of these lines? (right angles).

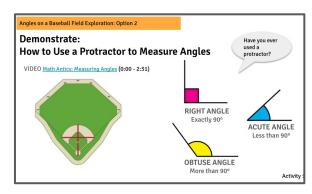
DEMONSTRATE:

Ask youth if they have ever used a protractor to measure angles. Share this video to explain how to use a protractor.

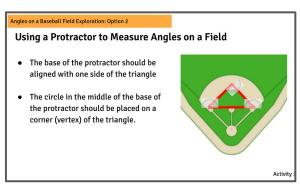
VIDEO:

https://www.youtube.com/watch?v=Fr 46LtLG7iw (00:00 - 2:31)

Demonstrate:
Using a
Protractor to
Measure
Angles on a
Field


Using
Baseball
Scenarios to
Form and
Measure
Angles on
the Field

To help youth measure the angles created by the triangles drawn for each scenario, show them how to correctly place the protector. The base of the protractor should be aligned with one side of the triangle and the circle in the middle of the base of the protractor should be placed on a corner (vertex) of the triangle.


Share the following scenarios with youth. Each scenario is described on a different page, and asks youth to draw lines between different locations on the baseball field. (see Worksheets 1, 2 and 3). For each scenario, ask youth to measure the ANGLES formed using a protractor, and record the angle measurements on the worksheet. Then, ask youth to identify the type of triangle formed, and record their reasoning.

Baseball Field Geometry Youth Slides, Slide 7

Baseball Field Geometry Youth Slides, Slide 8

Baseball Field Geometry Youth Slides, Slide 9

Worksheet 1

Worksheet 2

Worksheet 3

Activity 1 - Identifying Angles on a Baseball Field (4 of 5)

Using
Baseball
Scenarios to
Form and
Measure
Angles on the
Field
(Cont.)

Scenario 1.

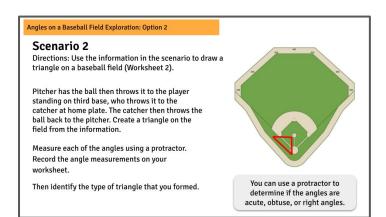
The second baseman is standing on second base with the ball, then throws it to the player standing on third base. The third baseman throws it to the player standing on first base and the first baseman throws it back to second base. Create a triangle on the field from the information. (Worksheet 1)

Scenario 2.

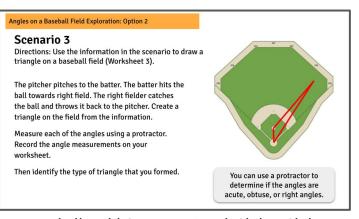
Pitcher has the ball then throws it to the player standing on third base, who throws it to the catcher at home plate. The catcher then throws the ball back to the pitcher. Create a triangle on the field from the information.

(Worksheet 2)

Scenario 3.


(Worksheet 3)

The pitcher pitches to the batter. The batter hits the ball towards right field. The right fielder catches the ball and throws it back to the pitcher. Create a triangle on the field from the information.


Angles on a Baseball Field Exploration: Option 2 Scenario 1 Directions: Use the information in the scenario to draw a triangle on a baseball field (Worksheet 1). The second baseman is standing on second base with the ball, then throws it to the player standing on third base. The third baseman throws it to the player standing on first base and the first baseman throws it back to second base. Create a triangle on the field from the information. Measure each of the angles using a protractor. Record the angle measurements on your worksheet. Then identify the type of triangle that you formed.

Baseball Field Geometry Youth Slides, Slide 10

acute, obtuse, or right angles.

Baseball Field Geometry Youth Slides, Slide 11

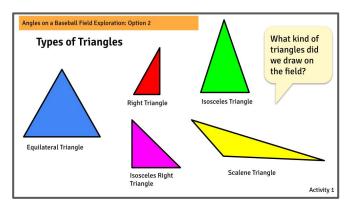
Baseball Field Geometry Youth Slides, Slide 12

ANSWERS:

Scenario 1: Isosceles Right Triangle, Angles: 1 right angle, 2 acute angles

Scenario 2: Right Triangle, Angles: 1 right angle, 2 acute angles

Scenario 3: Scalene, Angles: 1 obtuse angle, 2 acute angles


Activity 1 - Identifying Angles on a Baseball Field (5 of 5)

Group
Discussion of
Measuring
Angles on
Images of a
Baseball
Field using a
Protractor:

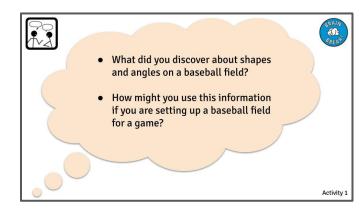
Ask youth to discuss what they notice about the triangles formed in each baseball scenario.

Discuss:

- What do you notice about the ANGLES formed by the lines?
- What different kinds of TRIANGLES do you see on the baseball field? (Ask youth to share properties of triangles)

Baseball Field Geometry Youth Slides, Slide 12 ADDITIONAL SUPPORT: Show video about types of triangles (0:00-2:50)

VIDEO:


https://www.youtube.com/watch?v=i95n30i0 Oq8

CLOSURE Reflection:

Wrap up the activity with a discussion of driving questions for the lesson.

- What did you discover about shapes and angles on a baseball field?
- How might you use this information if you are setting up a field for a baseball game?

Baseball Field Geometry Youth Slides, Slide 14

Activity 2 - Measure the Dimensions of Your Baseball Field (1 of 5)

Description:

Create small groups of 2-4 (3 is the ideal) for this activity. Using a 10 foot and then a 100 foot tape measure, youth will estimate, measure and record distances of the infield.

Math Ideas:

In measurement, **accuracy** refers to how close a measurement is to the actual, agreed upon value. If a distance measures 10 feet, and youth measure the distance and get 10 feet, then the measurement is considered accurate. In measurement, **precision** refers to the closeness of repeated measurements to one another. If youth measure a given distance 3 times, and get the same distance each time, then the measurement is very precise. By measuring distances repeatedly, youth can improve the accuracy of their measurements.

Growth Mindset Ideas:

While all baseball fields have the same distances between bases, the distance to the outfield wall may vary. To score home runs, players have to adapt to the distances of each ballpark. The brain can be trained to adapt to new situations as they arise. Youth learn that just like baseball players, they too can adapt to new situations and be successful.

Baseball Field!

LAUNCH Connection to Prior Knowledge:

out, and let it

return slowly

after use. Do

not let ao of

one end while

is holding the

other.

another person

Show youth a picture of a baseball field and ask youth to share what they know about distances on the field and how to use tools to measure distances:

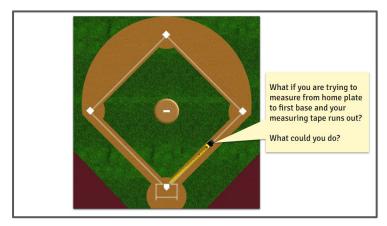
 Where do you start when you measure?
 What do the numbers on the measuring tape mean?

Use the images of measuring tapes on Slide 15 to review how to read inches and feet on a measuring tape & tips for using the tools safely.

What do you know about measuring measure distances: distance? What tools do you use? Where do you start when you What do you know measure? What do the numbers on the measuring tape mean? about measuring **Safety Tips:** distance? What tools do not pull the do you use? tape out too Baseball Field Geometry Youth Slides, Slide 15 Where do you start hard, but slowly pull it

What do these lines tell us? Safety first! How do we keep each other and ourselves safe while using a measuring tape? 10 11 1 13 15 14 15 15 17 18 19 20 What does this tell us? What does the F stand for?

Activity 2 - Part 1: Let's Measure Distances on our


Baseball Field Geometry Youth Slides, Slide 16

Activity 2 - Measure the Dimensions of Your Baseball Field (2 of 5)

Outdoor **Activity: Measuring** Infield **Distances** with 10-foot and 100-foot Measuring **Tapes**

Tell youth that they will work in small groups to measure an infield distance using a 10 foot measuring tape, and a 100 foot measuring tape.

Ask youth to notice the different units on the measuring tape and to discuss which side of the measuring tape they should use.

Baseball Field Geometry Youth Slides, Slide 17

Clarify key concepts such as keeping the measuring tape flat and straight, and aligning the beginning of the measuring tape with the beginning of the distance to be measured. Also discuss how to measure distances that are longer than the measuring tape.

Transition to the Small Group **Activity**

Divide youth into small groups with 2-4 youth per group (3 is ideal). Assign each small group one infield distance to measure.

- home plate to first base
- home plate to second
- home plate to third base
- home plate to the pitching mound

Measure INFIELD Dimensions of your Baseball Field Directions: Work with your group of 2-4 to measure infield distances on the baseball field. 1. Estimate each distance and record your estimate. 2. Measure the distance using a 10-foot measuring tape, as accurately as possible. 3. Measure the distance again, using a 100-foot measuring tape. 4. Record your measurements on Worksheet 4. 5. Follow your facilitator's instructions for what to do when you are done!

Baseball Field Geometry Youth Slides, Slide 18

Engagement Tip!

Have a plan for youth who finish measuring. Ex: have them measure other things on the field, or have one facilitator facilitate a game, stretching, art activity, etc. This can prevent misbehavior.

Explain the instructions.

- First, youth will estimate their assigned distance.
- Next, youth measure their assigned distance (in feet) using a 10-ft tape measure.
- Finally, youth use a longer tape measure (100 ft) to measure the same infield **distance** previously measured.
- Youth record their estimates and measured distances on Worksheet 4.
- Tell them what to do when they've finished

Estimate eac Measure the Measure the Record your	th distance and record distance using a 10-fo distance again, using measurements in the t	ot measuring tape, as ac a 100-foot measuring tap	curately as possible. ie.
	Estimate of Distance in feet	Measured distance with 10ft tape (in feet)	Measured distance with 100ft tape (in feet)
Home plate to first base			
Home plate to second base			
Home plate to third base			
Home plate to pitcher's mound			
Other			

Youth Worksheet 4

Activity 2 - Measure the Dimensions of your Baseball Field (3 of 5)

Group Discussion:

Ask youth to compare their measurements using the 10-foot measuring tape and the 100-foot measuring tape.

- How do your estimates compare to your actual measurements?
- Which measuring tool (the 10 ft tape or 100 ft tape) resulted in more accurate measurements? Why do you think that is?

Reflecting on our Findings (Comparing Measurements) Look at what you wrote on Worksheet 4. How do your estimates compare to your actual measurements? Which measuring tool (the 10 fit tape or 100 fit tape) resulted in more accurate measurements? Why do you think that is? Worksheet 5. How worksheet with your group in measuring it pea, as accordingly approach. Resurce the distance using a 15 de judge, as accordingly approach. Resurce the distance using a 15 de judge, as accordingly approach. Resurce the distance using a 15 de judge, as accordingly approach. Resurce the distance using a 15 de judge, as accordingly approach. Resurce the distance using a 15 de judge, as accordingly approach. Resurce the distance using a 15 de judge, as accordingly approach. Resurce the distance using a 15 de judge, as according Distance. Climate using a 15 de judge, as according Distance. Resurce the distance using a 15 de judge, as according to a 15 de ju

Baseball Field Geometry Youth Slides, Slide 19

Whole Group Discussion: Field Distances at Different Ballparks

Share Youth Slide 18 showing outfield distances at different ballparks.

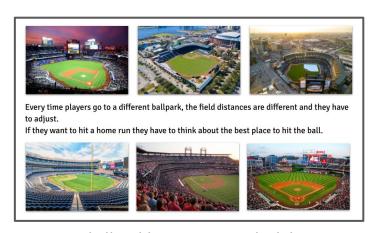
Ask youth to share what they notice and wonder about the differences in the distances (left field, center field, right field) at different ballparks.

- Are they all the same?
- What differences do you notice?
- How do you think these distances impact baseball players?

Activity 2 - Part 2: Growth Mindset

What do you notice about the OUTFIELD DISTANCES (left field, center field, right field) at different ballparks?

- Are they all the same?
- What differences do you notice?
- How do you think these distances impact baseball players?


Left	Center	Right
Field	Field	Field
	(

Ballpark Name	Left Field (feet)	Center Field (feet)	Right Field (feet)
Chase Field	335	407	335
Wrigley Field	355	390	355
Fenway Park	310	390	302
Yankee Stadium	318	408	314
Oracle Park	365	410	335
Petco Park	334	396	322

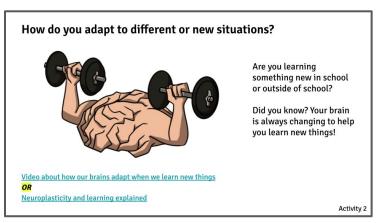
Baseball Field Geometry Youth Slide 20

Share images of different ballparks and discuss how baseball players have to adjust.

Every time they go to a different ballpark, the field distances are different and they have to adjust. If they want to hit a home run they have to think about the best place to hit the ball.

Baseball Field Geometry Youth Slide 21

Activity 2 - Comparing Distances at Different Ballparks (5 of 5)


Whole Group Video and Discussion: Our Brains Adapt to Learn New Things! Show youth one of the following videos about neuroplasticity and how our brains adapt to learn new things.

VIDEO 1:

https://www.youtube.com/wa tch?v=g7FdMi03CzI&list=PLcf BCltNc- Xzr5VaM0KBMbkcBn yqy2Zm&index=3

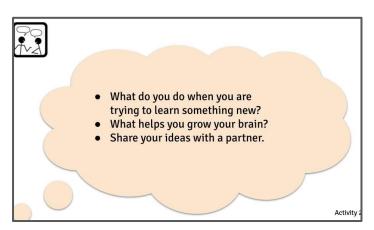
VIDEO 2:

https://www.youtube.com/watch?v=880L8NdkV-s

Baseball Field Geometry Youth Slides, Slide 22

Ask youth to think of a situation in their own life that is making their brains grow. Provide individual think time for youth to reflect on the following:

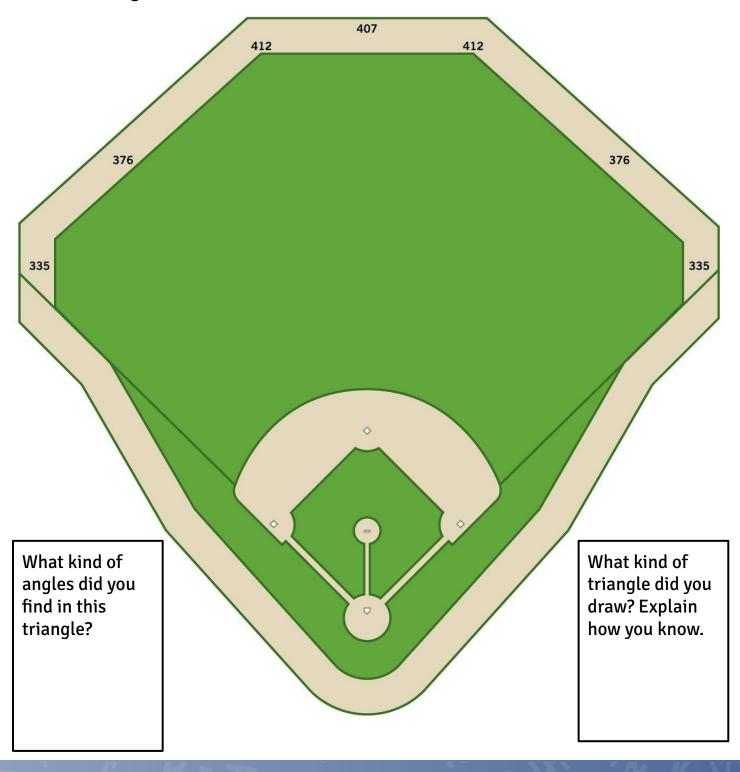
- A time when you had to adapt to a new situation or a new place
- A time you had to learn something new related to a hobby, in school, in sports or in another activity


Ask youth to turn and talk to a partner about their "adapting" or "new learning" situation. Youth should discuss what was happening in their brains as they learned new things.

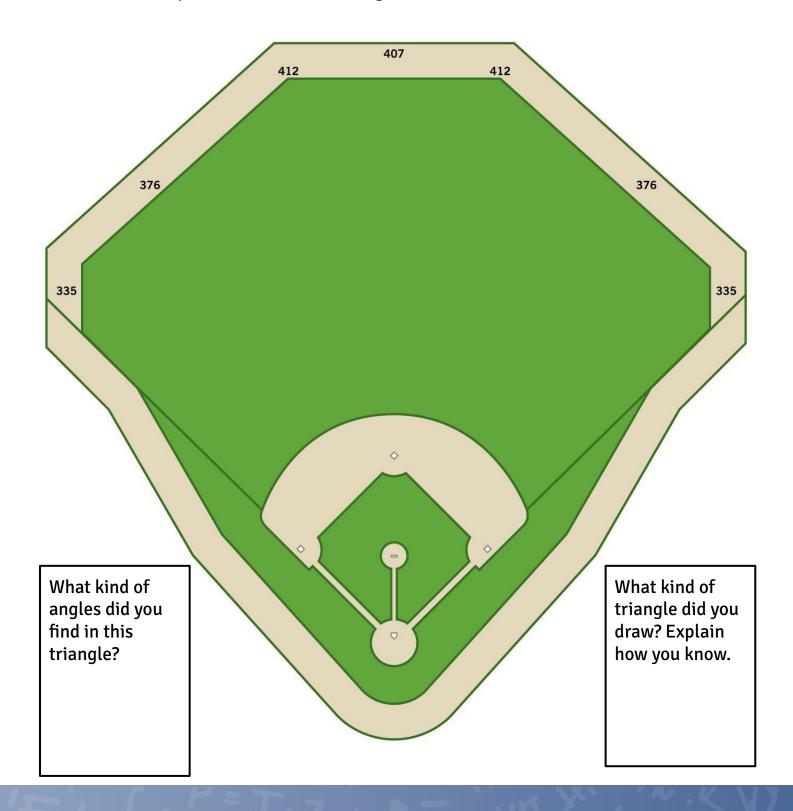
CLOSURE Reflection:

Wrap up the activity with a discussion of driving questions for the lesson.

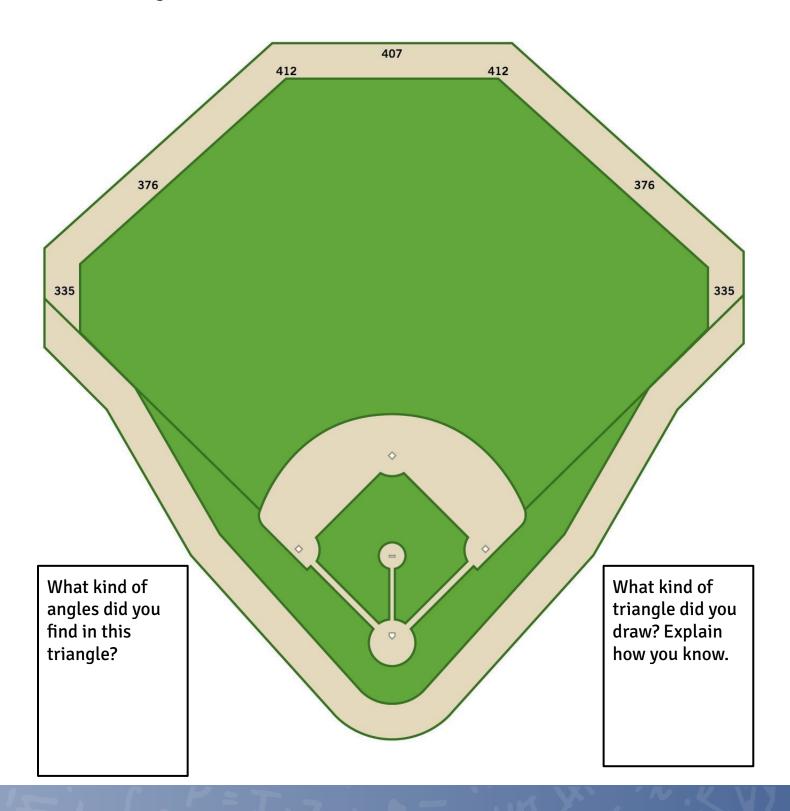
- What do you do when you are trying to learn something new?
- What helps you grow your brain?


Ask youth to stand up and find a partner, and share their ideas.

Baseball Field Geometry Youth Slides, Slide 23


Worksheet 1 - Angles and Shapes on the Baseball Field Scenario 1

Scenario #1 The second baseman is standing on second base with the ball, then throws it to the player standing on third base. The third baseman throws it to the player standing on first base and the first baseman throws it back to second base. Create a triangle on the field from the information.


Worksheet 2 - Angles and Shapes on the Baseball Field Scenario 2

Scenario #2 Pitcher has the ball then throws it to the player standing on third base, who throws it to the catcher at home plate. The catcher then throws the ball back to the pitcher. Create a triangle on the field from the information.

Worksheet 3 - Angles and Shapes on the Baseball Field Scenario 3

Scenario #3 The pitcher pitches to the batter. The batter hits the ball towards right field. The right fielder catches the ball and throws it back to the pitcher. Create a triangle on the field from the information.

Worksheet 4 - Measuring & Recording Distance

Directions: Work with your group to measure infield distances on the baseball field.

- 1. Estimate each distance and record your estimate.
- 2. Measure the distance using a 10-foot measuring tape, as accurately as possible.
- 3. Measure the distance again, using a 100-foot measuring tape.
- 4. Record your measurements in the table below.
- 5. Follow facilitator's instructions for what to do when you are done!

	Estimate of Distance in feet	Measured distance with 10ft tape (in feet)	Measured distance with 100ft tape (in feet)
Home plate to first base			
Home plate to second base			
Home plate to third base			
Home plate to pitcher's mound			
Other:			